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THE IMPACT OF CLIMATE CHANGE ON THE PROFITABILITY OF SITE SPECIFIC 
TECHNOLOGIES 

Robert Finger and Claude Nicolas Gerwig∗ 

Abstract 

Site Specific Technologies (SST) can reduce environmental pollution caused by common 
agricultural practice. Using a case study for corn yields, we investigate the impact of climate 
change (CC) on profitability of SSTs. We find CC to increase spatial variability of soils with 
respect to optimal input application and yield variability. This leads, ceteris paribus, to higher 
incentives for SST adoption in the future. 
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1 Introduction 

The relationship between agriculture and the environment is a major issue of agricultural 
research. It shows that common agricultural practice causes environmental pollution and leads 
to unsustainable use of resources such as soil and water (OECD, 2001). It is of particular 
social but also economic interest to foster pollution reduction and sustainable use of resources 
by agriculture. Site Specific Technologies (SSTs) are potential instruments to reach such 
goals. In contrast to conventional management practice, where inputs are applied uniformly 
across the field, management that employs SSTs (i.e. site specific management) is 
characterized by input application taking spatial variability across the field into account. 
Various studies show that SSTs lead to lower application rates of harmful inputs, reduce 
residues of inputs in soil and reduce emissions caused by fertilizer application (ANSELIN ET 
AL., 2004, ISIK and KHANNA, 2002 and 2003, KHANNA ET AL., 2000, PAMPOLINO ET AL., 2007, 
ROBLIN and BARROW, 2000). Our analysis is restricted to the crucial agricultural inputs 
nitrogen fertilizer and irrigation water because application of both can lead to the degradation 
of environmental systems (IEEP, 2000, and, KHANNA ET AL., 2000). Nitrogen fertilizer is 
furthermore a major source of climate relevant agricultural emissions (HUNGATE ET AL., 
2003).  
Projected changes in climatic conditions will cause changes in the productivity of crops and 
crop yield variability in the next decades. In particular soil characteristics determine the 
impact of climate change (CC) on crop yields (EITZINGER ET AL., 2003). Thererfore, CC is 
assumed to increase spatial variability of soils with respect to yield potentials, input use and 
yield variability, respectively. The latter are important for the profitability of SSTs (ISIK and 
KHANNA, 2003). Thus, CC is assumed to affect adoption of SSTs. Using a case study, this 
paper focuses on the relationship between CC and the incentive of crop farmers to use SSTs 
(shown in dashed box of Figure 1). 
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Figure 1: The relationship of crop farming, climate change and SSTs. 

Crop Farming

Climate Change

Emissions

Ad
op

tio
nImpact of CC on 

SST Adoption

Reduction Potential

Site Specific Technologies 

 
Source: own illustration 

We use simulated corn (Zea Mays L.) yields, which are particularly sensitive to field level 
variations of the soil properties (TITTONELL ET AL., 2006), at the eastern Swiss Plateau 
considering a base scenario of current climate and a CC scenario for the year 2050.    
The remainder of this paper is organized as follows. The economic model that estimates 
profitability of site specific management is presented in Section 2. Section 3 describes briefly 
the yield simulation process and the CC scenario. In Section 4, empirical methods and 
estimation results are presented. Model results and expected differences between conventional 
and site specific management are shown in Section 5. Finally, the impact of CC on SST 
adoption is discussed in the concluding section 6. 

2 The Model 

Our analysis is based on maximization of expected utility1, ( )),( σπUE , with ( ) 0>πUE  and  
0)( <σUE . Where E is the expectation operator, π  are quasi-rents (revenue minus variable 

costs) and σ  is the standard deviation of quasi-rents. Two management technologies are 
considered in this model: site specific and conventional management. In a static analysis, the 
utility maximization problem with respect to management technology choice is defined as 
follows (ISIK and KHANNA, 2003): 
 (1) )(),()(max CSCCSC

I
IKIUE σσσπππ −+−−+=   

Where Cπ  and Sπ  are the quasi-rents for conventional and site specific management, 
respectively. I  is an indicator function, i.e. 1=I  for SST adoption and 0=I  if conventional 
management is maintained. K denotes the costs of adoption, i.e. variable costs for hiring 
technology and experts (KHANNA ET AL., 2000). Cσ  and Sσ  are the standard deviations of 
quasi-rents for conventional and site specific management, respectively. Therefore, site 
specific management is adopted if: 
(2) ( ) ( )),(),( CCSS UEKUE σπσπ >− .  

                                                 
1 Subscripts denote derivatives. 



 4

Farmers are assumed to adopt site specific management if expected utility exceeds utility of 
conventional management practice and adoption costs. In our analysis, prices are assumed to 
be deterministic. Thus, the standard deviation of quasi-rents (i.e. the production risk) 
simplifies to )()( Xp Yσπσ = . Yield, with standard deviation )(XYσ , is the only stochastic 
element of quasi-rents. Hence, the optimization problem with respect to input use is defined 
as follows: 

(3) ( ) )())(()(max
,

XpZXXYpEUE Y
YX

σγπ −−= .   

p and Z are output and input prices, respectively. Moreover, )(XY  denotes the production 
function, i.e. the input (X) - output (Y) relationship. Expected utility is maximized subject to 
the production function constraint. The coefficient of risk aversion2, γ , indicates risk avers, 
risk neutral and risk taking behavior if 0>γ , 0=γ , and 0<γ , respectively. )(XYσ , the yield 
variation, is determined by weather and soil conditions, and input use. Input i is risk 
decreasing if 0<Y

xi
σ  and risk increasing if 0>Y

xi
σ .  

The first order conditions of eqn. (3) are: 

(4) ixxpxxExxUE iiyiiii ∀=∂∂−∂∂=∂∂ 0/)(/))((/)(( *** σγπ  

These first order conditions are equivalent to:    
(5) ipzxxf y

x
i

i
ii ∀=⋅−−∂∂ 0//)( * σγ .  

Where, *ix  is the optimal factor level and iz  is the price of input i. This tangency condition 
equals profit maximization if 0=γ . However, a risk premium, y

xi
σγ ⋅ , is included if 0≠γ . 

This is the difference between expected marginal productivity and the ratio of input and 
output prices at the optimal level of input use. Therefore, the optimal level of input use is 
smaller for an input that increases yield variation, if a risk averse instead of a risk neutral 
farmer is considered, and vice versa.  
In order to reflect heterogeneous soil conditions, the assumed field with land size M is divided 
into T sites of equal size3. Soil characteristics are homogeneous within each site but 
heterogeneous across sites. In our analysis, soil characteristics vary with respect to content of 
organic matter and soil fertility. Other soil characteristics, such as the soil texture, are 
assumed to be homogeneous across sites. Details on soil characteristics that are assumed in 
our analysis are given in the subsequent section 3. In order to model sites at the field, we draw 
(1000 draws) a site from a binomial distribution of two soils that are abbreviated as S1 and S2 
in the following. In this distribution, probability to draw S1 (p(S1)) and probability to draw S2 
(p(S2)) is 0.4 and 0.6, respectively.  
For every drawn soil composition (i.e. ratio of S1 and S2), four expected utilities are 
calculated: for site specific management and for conventional management with three 
different levels of information. For site specific management the soil type of each site is 
known and utility is maximized for each site, Tj ,...,1= . Therefore, field level expected 

utility for site specific management, ( )( )SUE π , is defined as follows:  

                                                 
2 The coefficient of risk aversion is defined as )//()/( πσπ ∂∂∂∂− UU . 

3 ∑
=

=
T

j

jMM
1
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(6) ( ) ( ) ( ))())(()()( ***

11

jYjj
T

j

jj
T

j

jS XpZXXYpEMUEMUE σγππ −−⋅=⋅= ∑∑
==

.   

In contrast, soil types of sites are not known if conventional management practice is assumed. 
We assume three different levels of farmers’ soil information: a) zero information: every input 
combination between )1(* SX  and )2(* SX has the same probability to be applied, i.e. drawn 

from a uniform distribution. b) ratio of soil components (S1 and S2) is known, CX  is equal to 
)2(6.0)1(4.0 ** SXSX ⋅+⋅ . c) rough information of soils, in order simulate an information 

situation in between the extremes (a, b), input combinations are drawn from a non-uniform 
discrete distribution4. Simulations are conducted with the program @Risk (WINSTON, 1996).    
For cases a) to c), farmers maximize, based on their soil information, expected utility 

( )( ))(),( CCCCC XXUE σπ . Input application for conventional management, CX , depends on 
the soil information scenario (a-c). Field level expected utility for conventional management, 

( )( )CUE π , is defined as follows:  

(7) ( ) )())(()( CYCCC XpZXXYpEUE σγπ −−= . 

The goal of this paper is to analyze the impact of CC on the profitability of SST adoption. 
Therefore, the utility maximization problem with respect to technology choice (eqn. 1) is 
reduced to the expected utility difference between site specific and conventional management 
(eqn. 8). This expected utility difference is calculated twice, for the base and the CC scenario. 

(8) ( ) ( ) ( )),(),(),( CCSS UEUECSUE σπσπ −=Δ   

3 Data 

Our analysis is based on corn yield data generated by the deterministic crop yield simulation 
model CropSyst (STÖCKLE ET AL., 2003). CropSyst parameterization for Swiss corn follows 
TORRIANI ET AL. (2007). The used yield simulation data sets are provided by the Agroscope 
Reckenholz-Tänikon Research Station ART in Zurich. Apart from agricultural inputs and 
CO2 concentrations, CropSyst is particularly driven by daily values of maximum and 
minimum temperature, solar radiation, and maximum and minimum relative humidity. 
Required weather data are provided by the Swiss Federal Office of Meteorology and Climate 
for six different locations on the eastern Swiss Plateau (see FINGER AND SCHMID, 2007A, for 
details). We use recordings for the years 1981 to 2003 which represent the base climate 
scenario. Assumed seasonal changes in temperature and precipitation for the CC scenario 
(abbreviated in the following as 2050) are presented in Table 1.   
Table 1:  Seasonal anomalies of temperature [°C] (absolute value) and precipitation 

[-] (relative value) with respect to the climate of the year 1990.  
2050 Climate variable 

DJF MAM JJA SON 
Temperature [°C] + 1.8 + 1.8 + 2.7 + 2.1 
Precipitation [-] 1.08 0.99 0.83 0.94 

DJF: December-February; MAM: March-May; JJA: June-August; SON: September-November.  

Source: OcCC (2005) 

                                                 
4  Probability (p) to draw )1(* SXi =0.05, p( )2(2.0)1(8.0 ** SXSX ii ⋅+⋅ )=0.1, p ( )2(4.0)1(6.0 ** SXSX ii ⋅+⋅ )=0.2,  

p( )2(6.0)1(4.0 ** SXSX ii ⋅+⋅ )=0.3, p( )2(8.0)1(2.0 ** SXSX ii ⋅+⋅ )=0.25, p( )2(* SX i ) =0.1 
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Based on climate anomalies, daily weather data for the 2050 scenario are generated with the 
stochastic weather generator LARS-WG (SEMENOV ET AL., 1998). Furthermore, CO2 
concentrations are randomly allocated to the observations. These concentrations range from 
339ppm to 379ppm for the base and from 495ppm to 561ppm for the 2050 scenario (IPCC, 
2000), respectively. The applied soil texture for both soil types (S1 and S2) is characterized by 
a fraction of 26% sand, 38 % clay and 36% silt. Soil depth amounts to 1.5 m. For soil 1 (S1), 
the soil organic matter content is constant at 2.6%. For soil 2 (S2), the latter is 2.6% in the top 
soil layer (5 cm) and 2.0% in lower soil layers. Due to higher content of organic matter in S1 
than in S2, higher amounts of nitrogen are mineralized from organic matter (Table 2). Thus, 
soil fertility in S1 is higher than for S2. 
Table 2:  Average amount of nitrogen mineralized from organic matter for Soil 1 

and Soil 2. 
 Average amount of nitrogen mineralized from organic matter in kg/ha 

Climate Scenario Soil 1 (S1) Soil 2 (S2) 

Base 115.65 88.54 

2050 115.22 91.09 

Source: CropSyst simulations. 

Sowing of corn is placed six days earlier in the 2050 than in the base scenario. Earlier sowing 
in corn farming is a powerful adaptation option to avoid negative effects due higher 
temperatures and reduced precipitation in the assumed CC scenario (Torriani et al., 2007). 
Management scenarios that are applied in the CropSyst simulations include nitrogen fertilizer 
and irrigation. In order to enhance variability of crop yields with respect to agricultural 
management, an experimental design is used. To this end, applications of nitrogen fertilizer 
and irrigation water are varied randomly5. 

4 Empirical Analysis 

Empirical analysis is restricted to two crucial inputs: nitrogen fertilizer (N) and irrigation 
water (W). The production function (Y(X)) is fitted to a square root functional form, which is 
the best specification of the Y~N,W relationship for corn yields on the eastern Swiss Plateau 
(FINGER and HEDIGER, 2007). CropSyst outputs are used to estimate the production functions. 
Eqns. (9),(10) and (11),(12) are the production function estimations for soil 1 (S1) and soil 2 
(S2) for the base and the 2050 scenario, respectively.  
(9)   S1/Base: 1/ 2 1/ 2 1/ 27872.7 158.3 77.8 6.7 2.4 0.2 ( )Y N W N W N W= + ⋅ + ⋅ − ⋅ − ⋅ + ⋅ ⋅  

(10) S1/2050: 1/ 2 1/ 2 1/ 28368.3 180.4 96.6 8 1.2 2.5 ( )Y N W N W N W= + ⋅ + ⋅ − ⋅ − ⋅ + ⋅ ⋅  

(11) S2/Base: 1/ 2 1/ 2 1/ 26601.9 313.1 67.1 10.5 2.5 0.4 ( )Y N W N W N W= + ⋅ + ⋅ − ⋅ − ⋅ + ⋅ ⋅  

(12) S2/2050: 1/ 2 1/ 2 1/ 27053.1 309.9 71.6 9.6 1 3.5 ( )Y N W N W N W= + ⋅ + ⋅ − ⋅ − ⋅ + ⋅ ⋅  
Y denotes corn yield (kg ha-1), N nitrogen fertilizer (kg ha-1), and W irrigation water (mm). 
Comparing the both scenarios, eqns. (9),(10) and (11),(12) show higher model intercepts and 
higher interaction parameters for (NW)1/2 in the 2050 scenario, for both soils. In general, more 
favorable climatic conditions, the increased CO2 concentration and earlier sowing lead to 
higher model intercepts, i.e. to higher corn yield without any input application. The increase 
of the interaction parameters for (NW)1/2 shows that irrigation becomes more important for 
optimal nitrogen uptake. In the base scenario, nitrogen uptake is sufficiently ensured by 

                                                 
5 Further details on data simulation are given in FINGER AND SCHMID (2007A). 
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precipitation. However, in the 2050 scenario, where summer rainfall is reduced (cf. Table 1), 
optimal nitrogen uptake is only ensured if irrigation takes place. 
Production functions are estimated using the robust regression technique of Reweighted Least 
Squares (see ROUSSEEUW AND LEROY, 1987, for details). This estimation technique increases 
the accuracy of estimation. Ordinary least squares estimation becomes inefficient and 
unreliable for production function estimation if exceptional observations are included in the 
analysis. Exceptional yield observations are, for instance, caused by climatic extreme events, 
such as the summer drought of 2003 (FINGER AND HEDIGER, 2007). Furthermore, all 
estimations are corrected for heteroscedasticity using Feasible Generalized Least Squares 
regression. The estimation is conducted with the ROBUSTREG and the MODEL procedure 
of the SAS statistical package (SAS INSTITUTE, 2004), respectively. 

Yield variation, )(XYσ , is defined as the absolute difference between expected and observed 
input-output combinations. Thus, absolute regression residuals of the production function 
estimation, e , are employed to estimate yield variation: 

(9) )(ˆ)()( XYXYeXY −==σ   

Yield variation is, among other factors such as weather and soil conditions, affected by input 
use (ISIK AND KHANNA, 2003). The relationship between yield variation and input use, 

WNXY ,~)(σ , is modeled using a square root functional form. In this model, the intercept 
captures effects of soil and weather conditions on yield variation. Eqns. (13),(14) and 
(15),(16) show yield variation function estimates (for the base and the 2050 scenario) for S1 
and S2, respectively.  

(13) S1/Base: 5.05.0 9.78.255.613),( WNWNY ⋅−⋅+=σ  

(14) S1/2050: 5.05.0 7.241.289.660),( WNWNY ⋅−⋅+=σ  

(15) S2/Base: 5.05.0 1.839409),( WNWNY ⋅−⋅+=σ  

(16) S2/2050: 5.05.0 3.208.395.468),( WNWNY ⋅−⋅+=σ  

For both soils, the intercept of the yield variation functions increases from the base to the 
2050 scenario. Thus, if neither irrigation nor nitrogen fertilizer application takes place, CC 
leads to higher yield variation. In general, the application of nitrogen fertilizer increases 
( 0>Y

Nσ ) and irrigation decreases ( 0<Y
Wσ ) yield variability. The propensity of irrigation to 

reduce yield variation, Y
Wσ , increases from the base to the 2050 scenario for both soils. Due 

to higher temperatures and lower summer precipitation, irrigation is a more risk decreasing 
activity in 2050 than it is currently. In contrast, the effect of nitrogen on yield variation, Y

Nσ , 
is not affected by CC. However, conclusions on the impact of CC on yield levels, yield 
variation and profitability of SST can be drawn if and only if utility maximization input and 
output levels are calculated such as in the subsequent section.  

5 Results 

Maximization of expected utility, as described in section 2, requires assumptions of input and 
output prices and the coefficient of risk aversion. These assumptions as well as coefficient 
estimates for production and yield variation functions (section 4) are employed to solve first 
order conditions (eqn. 5). In order to restrict our analysis to effects induced by CC we apply 
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similar input and output prices for both analyzed scenarios. We assume prices6 of CHF 0.185 
kg-1 , CHF 0.91 kg-1 and CHF 0.6 mm-1 for corn, nitrogen fertilizer and irrigation respectively 
(FINGER AND SCHMID, 2007A). Moreover, the analysis is restricted to one numerical example 
of constant risk aversion, γ  = 0.5. Sensitivity analyses of Swiss corn yields for different 
scenarios of climate change, prices and risk aversion is given in FINGER AND SCHMID (2007A 
AND 2007B). Derived optimal levels of input use, expected utility, yield and yield variation for 
both soils are presented in Table 3.  
Table 3: Optimal levels of input use, expected utility, yields and yield variation. 

Soil Type - 
Climate Scenario 

Nitrogen 
(kg/ha) 

Irrigation water 
applied (mm) 

Expected 
Utility per ha 

Yield  
(kg / ha) 

Yield 
variation 
(kg / ha) 

      
S1 -Base 40.07 53.45 1540.11 9055 718.81 
S2 -Base 91.60 42.30 1486.26 8986 729.27 

Absolute Differences 
between S1 and S2 51.53 11.15 53.85 69 10.46 

S1 - 2050 61.61 210.71 1754.09 10729 522.10 
S2 - 2050 137.93 208.49 1685.66 10788 643.21 

Absolute Differences 
between S1 and S2 76.32 2.22 68.43 59 121.11 

      

Table 3 shows that optimal fertilizer application for both climate scenarios is higher for S2 
than for S1. This is because of lower soil fertility of S2 (Table 2). For both soil types, 
application of both inputs, irrigation water and nitrogen, is higher in the 2050 than in the base 
scenario. Yields increase and yield variations decrease from the base to the 2050 scenario. 
Thus, expected utility is higher in 2050 for both soils. Moreover, Table 3 shows that absolute 
differences between S1 and S2 for expected utility, nitrogen application and yield variations 
increases from the base to the 2050 scenario. CC causes increasing differences between soils 
with respect to optimal input use and expected utility.  
In order to analyze the impact of CC on the profitability of SST adoption, we simulate utility 
differences of site specific and conventional management as described in Section 2. Input 
application for conventional management follows the three scenarios on soil information 
levels (a-c) that are described in section 2. For site specific management, optimal inputs such 
as presented in Table 3 are applied for each site (eqn. 6). Average differences in expected 
utility between site specific and conventional management (eqn. 8) are shown in Table 4.  

                                                 
6 Due to market liberalization, both Swiss input and output prices are assumed to decline in future. Thus, lower 

than current Swiss prices are assumed in this analysis. 
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Table 4: Expected utility differences between site specific and conventional 
management for the base and the 2050 scenario.  

Climate Scenario Expected utility differences between site specific and conventional management  

 Zero Information (a) Rough Information (c) Ratio of S1/S2 known (b) 

)),(( CSUEΔ - Base 10.49 8.33 6.22 

)),(( CSUEΔ - 2050 13.71 11.36 9.17 

Note: (a), (b) and (c) denote different levels on soil information. All expected utility differences, and differences 
between the base and the 2050 scenario, are significant at a 0.05 level (using the one sample Wilcoxon and the 
signed rank test, respectively). 
 
 A higher level of information about soil composition leads to smaller differences in expected 
utilities between site specific and conventional management (Table 4). This is due to smaller 
differences in input application between site specific and conventional management for higher 
levels of soil information. Thus, the incentive to adopt site specific management decreases for 
higher knowledge of soil composition.  
Moreover, Table 4 shows increasing differences in expected utilities between site specific and 
conventional management from the base to the 2050 scenario. The relative increase in this 
difference is between thirty and fifty percent. Further calculations (not shown) with different 
states of soil information and different composition of soils indicate relative increases in the 
same range. However, relative to the levels of expected utility given in Table 3, the expected 
utility increase caused by adoption of site specific management is small for both climate 
scenarios (smaller than one percent). The calculations of utility differences between site 
specific and conventional farming presented in Table 4 do not include adoption costs. These 
costs and expected effects on SST adoption are discussed in the subsequent section. 

6 Discussion and Conclusions 

Our case study shows increasing differences in expected utilities between site specific and 
conventional management from the base to the 2050 scenario. Thus, the incentive to adopt 
site specific management, ceteris paribus, increases. This is in particular due to increasing 
differences between soils with respect to optimal nitrogen application and corn yield variation 
(Table 3). Moreover, corn yield variation (i.e. production risk) for both soils is smaller in the 
2050 than in the base scenario. Lower production risk leads, in general, to higher rates of SST 
adoption (ISIK AND KHANNA, 2002). In order to validate our results for Swiss agriculture at 
large, further soil types, crops and CC scenarios should be considered. 
Adoption costs are omitted in the analysis of SST profitability presented in this study. This is 
due to the fact that site specific management is inexistent in Switzerland yet. There is no 
information on costs available. For Illinois, KHANNA ET AL. (2000) report costs of about CHF 
10 per hectare and year7 for hiring service that applies inputs at a varying rate in the field. Due 
to the lack of experience and the lack of service suppliers we expect, however, higher prices 
for this service in Switzerland. Taking expected utility differences between site specific and 
conventional management into account (Table 4), SST adoption is expected to remain small 
in current climatic conditions. However, these costs for hiring service are assumed to decline 
in the following years because of technical progress (KHANNA ET AL., 2000, AUERNHAMMER, 
2002) and improvements of landscape and plant related indicators (ANSELIN ET AL., 2004, 

                                                 
7 KHANNA ET AL. (2000): 5.157 $/acre (assumed exchange rate: USD/CHF = 1.2) 
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PAMPOLINO ET AL., 2007). Both higher differences in expected utility between site specific 
and conventional management and lower prices for SST adoption lead to higher incentives for 
SST adoption in future.  
CC will affect the incentive of SST adoption because effects of CC on crop production 
particularly depend on soil characteristics (EITZINGER ET AL., 2003). Therefore, we expect 
increasing spatial variability of soils with respect to input use and yield variation which is 
supported by this case study. This leads, ceteris paribus, consequentially to higher shares of 
site specific management in crop production under CC. Even though, this case study does not 
directly address environmental impacts of site specific management practice, it is indicated by 
other studies that the feedback loop between CC and crop production can lead to a reduction 
of emissions and pollution caused by agriculture and result in a more sustainable use of 
natural resources. Only if further research takes into account a broad range of farmers’ 
adaptation options, such as the here presented adoption of site specific management, the 
impacts of CC on agriculture can be sufficiently assessed. 
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